
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Orthorhombic phase of crystalline polyethylene:
A constant pressure path-integral Monte Carlo study

R. Martoňák,1,2,* W. Paul,1 and K. Binder1
1Institut für Physik, KoMa 331, Johannes Gutenberg Universita¨t, Staudingerweg 7, 55099 Mainz, Germany

2Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, 55021 Mainz, Germany
~Received 15 August 1997!

In this paper we present a path-integral Monte Carlo~PIMC! simulation of the orthorhombic phase of
crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles. This
work represents a quantum extension of our recent classical simulation@R. Martoňák et al., J. Chem. Phys.
106, 8918~1997!#. It is aimed both at exploring the applicability of the PIMC method on such polymer crystal
systems, as well as on a detailed assessment of the importance of quantum effects on different quantities. We
used theNpT ensemble and simulated the system at zero pressure in the temperature range 25–300 K, using
Trotter numbers between 12 and 144. In order to investigate finite-size effects, we used chains of two different
lengths, C12 and C24, corresponding to the total number of atoms in the supercell being 432 and 864, respec-
tively. We show here the results for structural parameters, like the orthorhombic lattice constantsa,b,c, and
also fluctuations of internal parameters of the chains, such as bond lengths and bond and torsional angles. We
have also determined the internal energy and diagonal elastic constantsc11, c22, andc33. We discuss the
temperature dependence of the measured quantities and compare to that obtained from the classical simulation.
For some quantities, we discuss the way they are related to the torsional angle fluctuation. In the case of the
lattice parameters we compare our results to those obtained from other theoretical approaches as well as to
some available experimental data. In order to study isotope effects, we simulated also a deuterated polyethyl-
ene crystal at low temperature. We also suggest possible ways to extend this study and present some general
considerations concerning modeling of polymer crystals.@S1063-651X~98!08102-1#

PACS number~s!: 02.70.Lq, 05.30.2d, 07.05.Tp, 61.41.1e
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I. INTRODUCTION

Polymer crystals are well known to be intrinsically diffi
cult to prepare in a highly crystalline state, which in tu
hinders the possibilities of their experimental characteri
tion. As a consequence, computer simulation appears to
convenient tool to study their properties. For crystalli
polyethylene~PE!, which represents the simplest and th
paradigmatic case, it has been recently shown@1# that clas-
sical constant pressure Monte Carlo~MC! simulation is a
well applicable simulation method, provided a good qua
force field is available. It allows one to calculate the who
variety of static local and collective quantities, includin
properties of major practical and technological importan
like thermal expansion and elastic constants. On the o
hand, recent work on the same system, using a quas
monic or self-consistent quasiharmonic approximation@2–
4#, has clearly pointed to a quantitative as well as a qual
tive inadequacy of the classical treatment at lo
temperatures, where quantum effects cannot be negle
anymore.

Generally, quantum effects are known to be importan
lattice dynamics of solids in the low-temperature regio
when classical thermal fluctuations become comparable t
smaller than the amplitude of the quantum zero-point m
tion. Under particular circumstances, when two differe

*Permanent address: Department of Physics, Faculty of Elect
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crystal structures have classically very close energies,
the system is close to a structural phase transition, quan
fluctuations can play a decisive role. In the case of so
nitrogen@5#, they are responsible for a strong isotope effe
on the low-temperaturea-g structural phase transition as
function of pressure. If the classical energy difference
small enough, quantum effects can even suppress the tr
tion altogether, and stabilize the disordered phase, as it
pens in the case of quantum paraelectrics SrTiO3 or KTaO3,
where the ferroelectric long-range order is only incipie
down toT50 @6#. Even though a PE crystal does not repr
sent such a dramatic case, at low temperatures it is not
sible to account even qualitatively for the temperature dep
dence of quantities like thermal expansion coefficients a
elastic constants without quantum effects being duly ta
into account.

A natural extension of the classical MC method in ord
to include quantum effects at finite temperature is the pa
integral Monte Carlo~PIMC! scheme@7#. Recently, theNpT
version of this method has been applied to study quan
effects in crystals at low temperatures, in particular in so
rare gas systems@8#, and silicon crystal@9#. In the case of
polymer crystals, the distinguishing feature is an extre
anisotropy, closely related to the existence of many ene
scales, ranging from soft intermolecular~nonbonded! inter-
actions to stiff intramolecular~bonded! interactions. This
feature presents a problem already at the classical leve
discussed in@10,11,1#, and requires an introduction of spe
cial global moves in the sampling algorithm. In the quantu
case, we should moreover expect very different converge
properties of different physical quantities as a function
Trotter number, depending on the typical energy scale w

al
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which a given quantity is associated.
The aim of this paper is basically twofold. On the o

hand, we explore the applicability of the constant press
PIMC method to a PE crystal, and determine the region
temperatures where the use of the method is practical. On
other hand, since the PIMC scheme is capable of provid
essentially exact results, it can also be used to asses
range of validity of approximate analytical methods, lik
e.g., quantum quasiharmonic approximation@2–4#. This is
particularly important for the study of intrinsically anha
monic phenomena, like, e.g., lattice thermal expansion.

The paper is organized as follows. In Sec. II, we brie
describe the PIMC simulation method used, without addre
ing the force field and its implementation, since these iss
have already been discussed in detail in@1#. In Sec. III, we
present and discuss the results, paying particular attentio
a comparison of the quantum results to the classical one
the final Sec. IV we draw some conclusions and sugg
some possible ways to extend this study. We also make
eral remarks concerning general issues related to modelin
polymer crystals. For completeness, in Appendix A
present the full form of the force field we have used toget
with numerical values of the parameters. In Appendix B,
present some considerations on the relation of correla
functions of torsional fluctuations to the contraction of t
crystal along the chain axis.

II. PIMC SIMULATION METHOD

In this section, we will describe only those features of t
simulation method that are specific for the constant pres
PIMC scheme. The implementation of the Sorensen-Li
Kesner-Boyd~SLKB! force field @12# we used as well as
many other features of the present algorithm are exa
identical to those of our classical simulation, which has be
described in detail in Ref.@1#. For convenience, however, i
Appendix A we summarize the form and parameters of
force field.

We have implemented the constant pressure PI
scheme basically along the same lines as it was done f
cubic system in Ref.@8#, the only difference being that in ou
case we had to use an anisotropic version of theNpT en-
semble. We have used the primitive decomposition of
Hamiltonian, resulting in the effective Hamiltonian

HP~$rW i
k%!5 (

k51

P S (
i 51

N
mi P

2\2b2~rW i
k2rW i

k21!21
1

P
V~$rW i

k%!D ,

~1!

whereN is the number of particles in the quantum syste
mi are their masses,P is the Trotter number,b51/kBT is the
inverse temperature, andV($rW i%) is the potential energy o
the system. Such an effective Hamiltonian represent
pseudoclassical system consisting ofP copies~Trotter slices!
of the original system, individual particles in neighborin
Trotter slices being connected via harmonic ‘‘springs,’’ a
periodic boundary conditions being applied along the Tro
direction. This pseudoclassical system has nowNP particles
and can be simulated using the same constant pressure
algorithm as in the classical case. The acceptance crite
for the volume moves was based on the Boltzmann fa
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(s1s2s3)NPe2bEP, whereEP5HP1pV0s1s2s3, p is the ex-
ternal pressure,V0 is the volume of the reference superce
ands1 ,s2 ,s3 are three independent scaling factors along
coordinate axes. In all simulations described in this pap
the external pressure was set to zero. The estimators fo
configurational properties, diagonal in the coordinate rep
sentation, are straightforward analogs of their classical co
terparts, while for the kinetic energy we used the virial es
mator @13#.

To sample the system, we have used three kinds
moves: classical moves, quantum moves, and volume mo
Classical moves of two types, local moves of atoms or glo
moves of whole polymer chains, as described in Re
@10,11,1#, have always been applied to all particles or cha
with a given number in all Trotter slices simultaneous
These moves sample the classical configurational ph
space of the system. We note here that when performin
rotation of a given chain in all Trotter slices, the energies
the ‘‘harmonic springs’’ between the corresponding ind
vidual particles have to be recalculated explicitly, in contr
to pure translational moves of a particle in all Trotter slice
which preserve the energy of the ‘‘springs.’’ Quantu
moves consisted of local translational moves of individu
particles of the pseudoclassical system, which sample
quantum fluctuations around the classical paths. In the qu
tum moves, different maximum displacements have b
used for C and H atoms, not only because of the differ
number of bonds but also because of the different mas
the atoms and resulting different stiffness of the ‘‘springs
In volume moves, we performed a simultaneous rescaling
coordinates of all particles in all Trotter slices by the thr
scaling factorss1 ,s2 ,s3. One Monte Carlo step per sit
~MCS! thus consisted of an attempted quantum move
each particle of the pseudoclassical system, followed b
classical move attempted successively on all atoms or
chains ~always simultaneously in all Trotter slices, as d
scribed above! and a volume move. Among the classic
moves, 30% of global moves were used, as in the class
study @1#. For all kinds of moves, the displacements we
chosen to yield an acceptance ratio of 20–30 %.

We have simulated systems with C12 and C24 chains, con-
sisting of 23336 and 233312 unit cells, respectively
~432 and 864 atoms!, at temperatures 25, 50, 100, 150, 20
and 300 K. At different temperatures, different numbers
values of the Trotter number were used. For the smaller s
tem, we used at 25 KP5144, at 50 KP554,72,144, at 100
K P536,54,72, at 150 KP548, at 200 KP516,24,32, and
finally at 300 K P512,16,24. The larger system was sim
lated only at 100 K withP572 and at 300 K withP524.
We note here that the largest pseudoclassical systems s
lated consisted of 43231445864372562208 particles,
which is quite a large number. As an initial configuration f
a given temperature, we always used a pseudoclassical
tem consisting ofP identical copies of an equilibrated clas
sical configuration at the same temperature. This configu
tion was then equilibrated for several thousand MCS with
full PIMC algorithm, which corresponded to switching o
the quantum fluctuations and allowing the system to fin
new equilibrium. For illustration of the run length used f
measurement, for the smaller system at 300 K andP524 we
used about 280 000 MCS. Roughly the same amount of C
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57 2427ORTHORHOMBIC PHASE OF CRYSTALLINE . . .
time was used for all data points, the number of Monte Ca
steps per site thus scaling inversely with the number of p
ticlesNP of the pseudoclassical system. The whole run c
sisted of numbers of subbatches ranging from 5 to 57 and
batch subaverages were used to estimate the approxi
error bars of the total averages.

III. RESULTS AND DISCUSSION

Before discussing in detail the results for various qua
ties, we comment briefly on convergence of the PIM
scheme as a function of the Trotter numberP. For different
quantities, we have found considerably different conv
gence, the best case being that of quantities like, e.g., la
constants, which are mainly related to softer interactio
~nonbonded interactions and torsional terms!. In such cases
where the results obtained with different values of Trot
number P were identical within the statistical error, th
quantum limit was practically reached and no extrapolat
was necessary. A considerably slower convergence is fo
for quantities such as the energy, which depend crucially
fluctuations of degrees of freedom related to strong~bonded!
interaction potentials. In these cases, an extrapolation
P→` was performed in order to recover the true quant
values. We have used the standard formula@14#

AP5A`1
a

P2 1
b

P41OS 1

P6D , ~2!

which requires data for three different values of Trotter nu
ber P in order to find the extrapolated valueA` .

In the discussion, we concentrate mainly on the comp
son of quantities obtained from the quantum simulation
their classical counterparts, presented in@1#. We start with
the local quantities, in particular fluctuations of the intern
coordinates, for which the quantum effects are found to
most pronounced.

In Figs. 1 and 2, we show the temperature dependenc
the average bond length fluctuation for C-C and C-H bon
respectively. The distinguishing feature of quantum res
for such fluctuations is their saturation at rather large val
at low temperatures, instead of the classical vanish
@A^(dr )2&}AT as T→0 in the classical case#. In particular
in the case of the C-H bond, there is a marked Trotter
pendence of the results. By means of the above descr
extrapolation, we found atT550 K the values of 0.05 Å for
A^(dr CC)2& and 0.079 Å forA^(dr CH)2&, which represent
about 3% and 7% of the respective equilibrium bond leng
These values are representative of the ground state va
since both curves appear to be entirely flat up to room te
perature, reflecting high frequencies of corresponding b
stretching phonon modes. In Figs. 3 and 4, average fluc
tions of the bond anglesuCCC and uHCH are shown as a
function of temperature. Trotter extrapolation atT550 K
yields here the values of 3.46° and 8.44° forA^(duCCC)

2&
and A^(duHCH)2&, respectively. While the former curve in
creases at room temperature by about 0.5° with respect to
ground state value, the latter one corresponding to the b
angle involving two hydrogen atoms is completely flat.

In Fig. 5, we show the temperature dependence of
average torsional angle fluctuationA^fCCCC
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minimum, which already in the classical case@1# has been
shown to play an important role in the physics of the syste
The values atT550 K andT525 K are already very close to
each other, and therefore theT525 K value of 5.59° can be
considered to be representative of the ground state. The c
acteristic temperature, below which the difference betwe
the classical and quantum values starts to increase rap
can be estimated to be about 150 K. At room temperat
the difference is still about 0.5°.

The internal energy per unit cell of the system is shown
Fig. 6. The dependence onP is in this case particularly pro

FIG. 1. Temperature dependence of the average fluctua
A^(dr CC)2& of the C-C bond length, in the classical and the qua
tum case, shown for different system sizes. In this and most of
following figures, statistical error bars are shown; lines are for
sual help only. In all figures, the same symbol is used for quan
results corresponding to different values of the Trotter numberP.
When at a given temperature the results for different values ofP are
indistinguishable within the statistical error, as in this figure, t
Trotter numbers are not indicated explicitly.

FIG. 2. Temperature dependence of the average fluctua
A^(dr CH)2& of the C-H bond length, in the classical and the qua
tum case, shown for different system sizes. When the quantum
sults at a given temperature exhibit a pronounced dependenc
the Trotter numberP, as in this figure, the corresponding values
P are indicated next to the symbols.
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2428 57R. MARTOŇÁK, W. PAUL, AND K. BINDER
nounced, since the dominant contribution at low tempe
tures comes from the hard degrees of freedom that req
larger values of the Trotter number in order to converge. T
extrapolation toP→` is thus absolutely necessary here, a
has been performed for all temperatures where data for t
values ofP are available, i.e., 50, 100, 200, and 300 K. T
extrapolated values at 50 and 100 K suggest that the en
in this region would still somewhat decrease by approach
zero temperature and the extrapolated value of 62.125 k
mol at 50 K can be considered as an upper estimate of
ground state total energy. By subtracting the classical gro
state energy, which is found to be equal to27.39 kcal/mol
per unit cell, we find a value of 17.38 kcal/mol per CH2
group, which agrees well with the zero-point energy
17.598 kcal/mol, obtained in Ref.@15# within quasiharmonic
approximation for a different force field.

Concerning the structural stability, for the smaller syst
we observed atT5300 K an occasional rotation of a who

FIG. 3. Temperature dependence of the average fluctua
A^(duCCC)

2& of the C-C-C bond angle, in the classical and t
quantum case, shown for different system sizes.

FIG. 4. Temperature dependence of the average fluctua
A^(duHCH)2& of the H-C-H bond angle, in the classical and t
quantum case, shown for different system sizes.
-
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chain from the ‘‘herringbone’’ structure, just as in the cla
sical case@1#. No such rotation was observed for the larg
system, however.

Before passing to the discussion of the temperature
pendence of the lattice constantsa, b, andc, we would like
to make a general comment on the statistical error of lat
constants of crystals evaluated within constant press
PIMC scheme. The statistical errors(^a& run) of the lattice
constant̂ a& run averaged over a run consisting ofN configu-
rations is given by

s~^a& run!5
s~a!

AN/s
, ~3!

wheres(a) is the intrinsic fluctuation of the quantitya, and
s is the corresponding statistical inefficiency, expressing
effect of correlations between subsequent configuration

n

n

FIG. 5. Temperature dependence of the average torsional a
fluctuationA^fCCCC

2 & from the trans minimum, in the classical an
the quantum case, shown for different system sizes.

FIG. 6. Temperature dependence of the internal energy per
cell of a quantum system with C12 chains, shown for different val-
ues of the Trotter numberP, together with an extrapolation to
P→`. Note the strong dependence on the Trotter numberP.
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57 2429ORTHORHOMBIC PHASE OF CRYSTALLINE . . .
the Monte Carlo run@16#. In order to keep the Trotter erro
roughly constant at different temperatures, one usually ke
the productPT constant. For given system size and amo
of CPU time, the number of configurationsN is inversely
proportional to the Trotter numberP and thus directly pro-
portional to temperatureT. On the other hand, the fluctuatio
s(a) of the lattice constanta is essentially a fluctuation o
the linear size of the system, which is a purely classi
fluctuation, and obeys the equipartition theorem. Provid
the elastic constants of the system do not vary too mu
which should be well satisfied at low temperatures, the re
tion s2(a);T should hold. Combining the expressions t
gether, we find

s~^a& run!;
AT

AT/s
;As, ~4!

where the explicit dependence onT in the numerator and
denominator has canceled. Of course, there is still an imp
dependence hidden in the factors, which increases with de
creasing temperature because of growing system size in
Trotter direction. Nevertheless, in the case of such a pu
classical fluctuation which vanishes asT→0, the situation is
more favorable with respect to the case of a general fluc
tion, which would instead tend to a finite zero-point quantu
value. In our results for the lattice constants, this is illu
trated by the fact that the error bars of points at lowest te
peratures are not larger than those of points at higher t
peratures.

The temperature dependence of the lattice constantc is
shown in Fig. 7. In both classical and quantum cases a la
contraction with increasing temperature is observed. An
teresting feature here is that atT;50 K, the classical and
quantum curves cross. At higher temperatures, the quan
result stays above the classical one while falling slightly
low that forT,50 K, where the quantum flattening appea
This behavior suggests the presence of at least two dis
quantum effects. Since in the classical case@1# it turned out
that there is a linear dependence betweenc and^fCCCC

2 &, we
have tried the same plot for our quantum data, Fig. 8,

FIG. 7. Temperature dependence of the lattice parameterc, in
the classical and the quantum case, shown for different sys
sizes, together with the experimental data@17#.
ps
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order to separate different contributions. In the latter plot,
classical and quantum curves are roughly parallel to e
other, which shows that the low-temperature flattening oc
is a consequence of freezing of the thermal contribution
the torsional fluctuations. With the exception of the lowe
temperatures, the shift of the quantum curve with respec
the classical one appears to be temperature independen
ing roughly equal to 0.0015 Å. This represents a zero-po
expansion of the lattice along thec direction arising from
hard modes that are not significantly excited even at ro
temperature. While in the classical case all points are fo
to fall very well on a straight line in the whole temperatu
range@1#, in the quantum case a distinct upward bending
the curve is apparent at low temperatures. To understan
origin, one might try to use the full formula

c5c0S 12
1

4
sin2

a

2

1

2
^~f02f1!2& D

5c0F12
1

4
sin2

a

2
^f0

2&S 12
^f0f1&

^f0
2&

D G , ~5!

derived in Ref.@3# ~see also Appendix B!, which relates the
contraction of the lattice constantc to correlation functions
of two neighboring torsional angle fluctuationsf0 ,f1. The
temperature dependence of the normalized correlation fu
tion ^f0f1&/^f0

2& is shown in Fig. 9. In contrast to the clas
sical curve, which is flat in the whole temperature region,
quantum one is seen to increase in value at low temperat
where it becomes almost a factor of two larger than the c
sical one. In Fig. 10 we plotc versus1

2 ^(f02f1)2&. In this
plot, the low temperature upward bending from Fig. 8 h
become less pronounced and the points now exhibit a c
linear dependence, which suggests that the bending ha
origin in the quantum reinforcement of the correlation fun
tion ^f0f1&/^f0

2& of neighboring torsions at low tempera
tures. The slope of 1.27531024 Å deg22, however, turns out
to be larger in magnitude by a factor of two with respect

m
FIG. 8. Lattice parameterc vs ^fCCCC

2 &, in the classical and the
quantum case, shown for different system sizes. Note that als
the quantum case, the dependence is almost linear over the w
temperature range. The values of temperature, which is a param
of the plot, are indicated next to the symbols.
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2430 57R. MARTOŇÁK, W. PAUL, AND K. BINDER
the value of 1
4 c0sin2(a/2)(p/180)256.2231025 Å deg22

resulting from Eq.~5! ~we took the valuesc52.53 Å and
a5180°2110.75°). About the same discrepancy in t
slope is found also for the classical data, and this has b
pointed out already in Ref.@1# ~where, however, the correla
tion function between neighboring torsions was neglec
and the discrepancy thus turned out to be just about a fa
of 1.5!. While in the classical case the thermal contract
could be modified due to contribution of modes other th
torsions, in the quantum case such harder modes are m
frozen even at room temperature, and do not contribute c
siderably. Thus in the quantum case the formula~5! should
yield a better agreement with the simulation. As it turns o
however, it captures qualitatively correctly the basic role
torsional correlation functions in the thermal contraction, b

FIG. 9. Temperature dependence of the normalized correla
function ^f0f1&/^f0

2& of fluctuations of two neighboring torsiona
angles from the trans minima, in the classical and the quantum c
for the system with C12 chains. Note the pronounced dependence
the Trotter numberP.

FIG. 10. Lattice parameterc vs 1
2 ^(f02f1)2& in the quantum

case for system with C12 chains. The values of temperature, whi
is a parameter of the plot, are indicated next to the symbols.

points can be fitted by a linec52.532721.27531024 1
2 ^(f0

2f1)2&.
en

d
tor
n
n
tly
n-

t,
f
t

fails in the quantitative aspect. We discuss the origin of t
discrepancy in detail in Appendix B. Analogously to th
classical case, no significant finite-size effects are seen on
lattice constantc. Comparing the quantum result to expe
mental data@17# in Fig. 7, we see that apart from the co
stant offset, the agreement has improved at low temp
tures, due to the quantum flattening.

In Fig. 11, we show the temperature dependence of
lattice constanta. At temperatures below 50 K, the quantu
curve appears to be entirely flat, and the difference betw
the quantum and the classical result is in this region as la
as 0.13 Å, which represents a 2% effect. At all temperatu
the quantum curve lies above the classical one. It is inter
ing to note that the difference between the two curves p
sists up to room temperature, being atT5300 K equal to
0.06 Å, which is still about a half of the zero-temperatu
value. For this lattice constant, a very good agreement
tween the simulation and experimental results@17# is found,
which proves that almost the whole low-temperature discr
ancy between the classical simulation results and experim
is purely due to quantum effects. Similarly to the classi
case, no finite-size effect is seen on the quantum curveT
5100 K, while a small one is seen atT5300 K.

Analogously to the case of the lattice constantc, in Fig.
12 we plot the lattice constanta versus^fCCCC

2 &. Interest-
ingly, in such a ‘‘scaling’’ plot, both classical and quantu
results are found to collapse nearly on the same straight
which shows that the lattice constanta does not depend on
temperature explicitly, but only implicitly, through the tem
perature dependence of the torsional fluctuations. Since
latter dependence is very different in the classical and qu
tum cases, the behavior ofa is also substantially different.

In Fig. 13, the temperature dependence of the lattice c
stant b is shown. Similarly to the classical case, the er
bars forb are larger than those fora. The quantum flattening
at low temperatures is now less pronounced, and in orde
find the limiting zero-temperature value ofb, it would be
necessary to go to even lower temperatures than 25 K. H
again, the quantum curve lies above the classical one a
temperatures. At 25 K, the difference between them is ab

n

se,
n

e

FIG. 11. Temperature dependence of the lattice parametera, in
the classical and the quantum case, shown for different sys
sizes, together with the experimental data@17#.
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0.03 Å, which represents a 0.6% effect, while at 300 K
decreases to about 0.02 Å. A finite-size effect very simila
the one in the classical case is observed here too. It is vis
already at 100 K, where the point for the system with C24
chains falls slightly below that for the system with C12
chains, while being strongly pronounced at 300 K, where
difference is about 0.035 Å. The same finite-size effec
also visible in the ‘‘scaling’’ plot in Fig. 14, where moreove
at lower temperatures a downward bending of the quan
curve can be observed. Comparison to the experimental
@17# in Fig. 13 in this case appears to be less good than in
case ofa, however, for a detailed comparison simulati
data for larger system sizes would be required.

We have also computed the diagonal elastic const
c11,c22,c33 of the system. Analogously to the classical ca
@1#, we evaluatedc11,c22 from the Parrinello-Rahman fluc
tuation formula@18#,

FIG. 12. Lattice parametera vs ^fCCCC
2 &, in the classical and

quantum case, shown for different system sizes. The values of
perature, which is a parameter of the plot, are indicated next to
symbols. Note the collapse of both classical and quantum result
almost the same straight line over the whole temperature rang

FIG. 13. Temperature dependence of the lattice parameterb, in
classical and quantum case, shown for different system sizes
gether with the experimental data@17#. Note the strong finite-size
effect at higher temperatures for both classical and quantum res
t
o
le

e
s

m
ta
e

ts
e

cik5
kBT

^V&
^eiek&

21, i ,k51,2,3, ~6!

while for c33 we used the Gusev-Zehnder-Suter formula@19#
in its approximate version suitable for small strain fluctu
tions

cik52(
n

^pien&^enek&
21, ~7!

whereV is the supercell volume andpi andei are the diag-
onal components of the pressure tensor and strain ten
respectively. This choice of methods was motivated by
finding that in the classical case@1# significantly smaller sta-
tistical errors resulted forc33 from the Gusev-Zehnder-Sute
formula ~7!, while for the other elastic constants errors we
slightly smaller for the Parrinello-Rahman fluctuation fo
mula ~6!. Both formulas are classical and their use for eva
ation of elastic constants also in case of PIMC technique
justified by the fact that strain fluctuations are classical
jects that have the same values in all Trotter slices. T
results are shown on Figs. 15, 16, and 17. The data forc11
exhibit a flattening at low temperatures and suggest that
ground state value is reduced with respect to the classical
by about 2 GPa. A similar conclusion might be true also
c22, where the large statistical error precludes a more
tailed comparison. The best results are obtained forc33,
analogously to the classical case. Here the flattening
clearly seen and the ground state value is reduced du
quantum effects by about 20 GPa. In Fig. 18,c33 is plotted
against̂ fCCCC

2 &. The quantum points fall close to the line o
collapse of the classical points, which indicates that a do
nant part of the quantum softening ofc33 has its origin in the
finite value of zero-point torsional fluctuations. Not surpr
ingly, error bars of the quantum data are much larger co
pared to the corresponding classical ones. Our results s
that for a strongly anisotropic crystal, in might be possible

m-
e

on

to-

lts.

FIG. 14. Lattice parameterb vs ^fCCCC
2 &, in the classical and the

quantum case, shown for different system sizes. The values of
perature, which is a parameter of the plot, are indicated next to
symbols. Note the strong finite-size effect at higher temperatures
both sets of data as well as the downward bending of the quan
curve at low temperatures.
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obtain fairly good results for some components of the ten
of elastic constants, while other components might be m
more difficult to compute. In any case, calculation of elas
constants within the PIMC scheme is at present computat
ally very demanding.

Finally, we have also studied isotope effects by simu
ing deuterated PE. In this case, we have performed the s
lation only at the lowest temperatureT525 K, with the same
system size and Trotter number as in case of normal~hydro-
genated! polyethylene. The results for some quantities a
summarized in Table I. All three lattice constants are sho
in deuterated PE. The largest effect is seen on the la
constanta, while in case ofb its relative magnitude is
smaller by a factor of 3 and in that ofc by a factor of 20.

IV. CONCLUSIONS

In this paper, we have demonstrated that for system s
of several hundred atoms, PIMC is a practical method allo

FIG. 15. Elastic constantc11 as a function of temperature, i
both the classical and the quantum case, shown for different sy
sizes.

FIG. 16. Elastic constantc22 as a function of temperature, i
both the classical and the quantum case, shown for different sy
sizes.
r
h

c
n-

t-
u-

e
r

ce

es
-

ing a fully quantum simulation of crystalline systems wi
many different energy scales, like realistic explicit ato
models for polymer crystals with no constraints on the d
grees of freedom. Even in the low-temperature region, wh
the system is close to its ground state, it is possible to
culate lattice constants and internal coordinates with a fa
good accuracy. On the other hand, an accurate determina
of elastic constants is still very difficult. The limitations o
the method in a study of the thermal expansion of the
crystal are mainly set by the fact that the finite-size effects
the quantum case are more pronounced with respect to
classical one, while at the same time it is more difficult
simulate larger systems, because of the extra Trotter dim
sion. It would be very helpful to have for an anisotrop
crystal a combined finite-size scaling scheme, allowing a
multaneous extrapolation of lattice constants to thermo
namic limit and Trotter limit, analogous to the one develop

m

m

FIG. 17. Elastic constantc33 as a function of temperature, in
both the classical and the quantum case, shown for different sys
sizes.

FIG. 18. Elastic constantc33 vs ^fCCCC
2 &, in both the classical

and the quantum case, for system with C12 chains. The values of
temperature, which is a parameter of the plot, are indicated nex
the symbols. Note that the quantum results fall close to the
passing through the classical results.
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TABLE I. Isotope effect: deuterated PE compared to normal~hydrogenated! PE. All values correspond to
the system with C12 chains andP5144 atT525 K. No extrapolation toP→` has been performed here.

Normal PE Deuterated PE Difference

a 7.20160.003 Å 7.17060.003 Å 20.43%
b 4.92860.002 Å 4.92160.002 Å 20.14%
c 2.529760.0001 Å 2.529260.0001 Å 20.02%
A^fCCCC

2 & 5.5960.01° 5.2660.015° 25.9%
A^(duHCH)2& 8.2860.001° 7.1760.003° 213.4%
A^(dr CH)2& 0.07460.00001 Å 0.06560.00001 Å 212.1%
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in Ref. @8# for the specific heat of a cubic crystal. A prer
quisite for such scaling, however, is an availability of hig
accuracy data. A possible route here might be an impro
ment on the primitive PIMC algorithm by using a bett
approximation to the density matrix, similar to that used
liquid 4He in Ref.@7#, allowing a substantial reduction of th
Trotter number. In a polymer crystal, the stiffest parts of
potential are the bond stretching terms, which formally ha
a form of pair interactions between neighboring atoms.
such pair interactions, it is possible to calculate the ex
two-body density matrix, either by means of expansion
eigenfunctions, or by matrix squaring. This exact form co
be tabulated and used in the simulation, while the rest of
potential would be treated in a standard way. Such a t
can be expected to considerably improve the Trotter con
gence, which in turn would enable simulation of larger s
tems and increase the statistical accuracy of the results.

A detailed comparison to a quasiharmonic approximat
will be done in a forthcoming paper@20#. It would also be of
interest to perform such an approximation for finite lattic
in order to clarify the physical origin of the finite-size effec
in both classical and quantum cases, which still remain to
understood.

Concerning the physics of the system, we have dem
strated that in both the classical and the quantum case
torsional fluctuations play a central role in the thermal e
pansion of the system. It would be desirable to have an a
lytical theory of the lateral thermal and zero-point expansi
allowing one to understand the origin of the anisotropy
both cases. We have determined also some local quant
in particular zero-point fluctuations of internal coordinate
like bond lengths and bond and torsional angles, knowle
of which might be of relevance for local experimental tec
niques.

Finally, we would like to make a few remarks concerni
modeling of polymer crystals in general, taking into accou
quantum effects. It seems to us that for this sort of syst
force field building lags somewhat behind the developm
of simulation methods, concerning in particular the ability
reproduce anharmonic effects correctly. As already poin
out in Ref. @1#, in the classical limit, where in principle a
phonon modes can contribute to the thermal expansion o
system, there is a substantial difference between the pro
ties of SLKB force field @12# and Karasawa-Dasgupta
Goddard~KDG! force field@15#, as far as the thermal expan
sion coefficienta3 is concerned. In the case of the form
one,a3 is classically negative at all temperatures, and or
nates dominantly from torsional fluctuations, while for t
latter one it vanishes asT→0 @2#, which points to a large
e-

r

e
e
r

ct
n

e
k
r-
-

n

s

e

n-
he
-
a-
,

es,
,
e

-

t
,
t

d

he
er-
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contribution of other modes. Such behavior might perha
have to do with the equilibrium values in the bond stretch
and angle bending terms since for the KDG force field th
are substantially different from their average values, wh
in our opinion does not seem to be sufficiently justified. Th
also demonstrates that the properties of a polymer crysta
much more sensitive to the details of the force field th
those of a liquid. In order to have a systematic control of
important anharmonic properties of a solid polymer syste
an improvement on the side of the force field building
necessary. Such improvement would allow one to expl
fully the potential of existing classical and quantum simu
tion methods. One first and relatively simple thing to do
order to develop force fields suitable for quantum simu
tions would be to use a quantum quasiharmonic approxi
tion to determine the ground state structure, instead of b
energy minimization, for fitting force fields to experiment
structures. Obviously, a prerequisite for this is a better
perimental characterization of the system in the whole ra
of temperatures, making use of up-to-date experimental te
niques, such as, e.g., x-ray diffraction with synchrotr
sources. Such techniques should also allow a precise ex
mental determination of isotope effects on lattice consta
and thermal expansion, which might in principle help one
decide which of the above-mentioned force fields provide
better description of the real PE crystal. While for the SLK
force field the difference between classical and quant
value ~the isotope effect is also related to this difference! of
a3 tends to vanish in the temperature region over 200
where the torsional fluctuations become thermally activat
in case of the KDG force field a large difference persists
to room temperature@2#. Accurate measurements of all com
ponents of the tensor of elastic constants in a wide region
temperatures would also be very interesting and helpful.
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APPENDIX A

In this Appendix, we present the full form of the forc
field used in our present quantum and previous class
simulation @1#, which is a slightly modified version of the
SLKB force field @12#. While the formal modifications have
been described in detail in Ref.@1#, here we provide the
actual numerical values of all parameters. The force fi
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TABLE II. Parameters of the bonded interaction of the force field. The first and second columns c
the coefficients of terms diagonal in the internal coordinates of the chains, while the third and fourth
contain the coefficients of the off-diagonal terms.

r 0
CC @Å# 1.53 kr ,u

HCH @kcal/~mol Å!# 0

kCC @kcal/(mol Å2)# 617.058 kr1,r2
HCH @kcal/(mol AA2)# 0

r 0
CH @Å# 1.09 kr1,u

CCH @kcal/~mol Å!# 234.0818

kCH @kcal/(mol Å2)# 654.455 kr2,u
CCH @kcal/~mol Å!# 0

kHCH @kcal/mol# 76.952 kr1,r2
CCH @kcal/(mol Å2)# 0

u0
HCH @°# 107.899 kr ,u

CCC @kcal/~mol Å!# 254.494

kCCH @kcal/mol# 85.726 kr1,r2
CCC @kcal/(mol Å2)# 25.9337

u0
CCH @°# 109.469 GCC:CH @kcal/mol# 26.0034

kCCC @kcal/mol# 107.446 GCC:HH @kcal/mol# 23.6409

u0
CCC @°# 110.999 GCH:CC @kcal/mol# 2.9127

VHCCH @kcal/mol# 0.2776 GCH:CH @kcal/mol# 0

VCCCH @kcal/mol# 0.2776 FH:CC:H @kcal/mol# 216.0398

VCCCC @kcal/mol# 0.2776 FC:CC:H @kcal/mol# 215.5343

FC:CC:C @kcal/mol# 233.3664
d
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consists of bonded and nonbonded interactions. The bon
interactions involve bond stretching, angle bending, and
sions, as well as off-diagonal, or cross terms, coupling
gether the different internal coordinates of the chains. T
corresponding terms have the form of the following expr
sions:
~a! Bond stretching, applying to all C-C and C-H bonds:

U~r !5
1

2
kIJ~r 2r 0!2. ~A1!

~b! Angle bending, applying to all C-C-C, C-C-H, an
H-C-H angles:

U~u!5
1

2
kIJK~cosu2cosu0!2. ~A2!

~c! Torsion terms, applying to all C-C-C-C, C-C-C-H, an
H-C-C-H sequences,

U~w!5
1

2
VIJKL~11cos3w!, ~A3!

wherew is the torsional angle (w50 corresponds to cis an
w5p corresponds to trans!. Throughout the rest of the pa
per, we use also torsional anglef defined as a fluctuation o
w from the trans value,f5w2p.

~d! Bond-angle and bond-bond cross terms, applying
all C-C-C, C-C-H, and H-C-H angles,
ed
r-
-
e
-

o

U~r 1 ,r 2 ,u!5kr 1 ,u
IJK ~r 12r 10!~cosu2cosu0!1kr 2 ,u

IJK ~r 22r 20!

3~cosu2cosu0!1kr 1 ,r 2

IJK ~r 12r 10!~r 22r 20!,

~A4!

where r 1 and r 2 are the bond lengths of theI -J and J-K
bonds adjacent to anIJK bond angleu.

~e! One-center angle-angle cross terms, applying to
pairs of bond angles about a tetrahedral carbon atom sha
a common bond,

U~u1 ,u2!5GIJ:KL~cosu12cosu t!~cosu22cosu t!,
~A5!

whereu1 ,u2 are theJIK andJIL bond angles, respectively
and I is the tetrahedral carbon. Here,u t is the tetrahedral
angle.

~f! Two-center angle-angle cross terms, applying to
C-C-C-C, C-C-C-H, and H-C-C-H sequences,

U~w,u1 ,u2!5FI :JK:Lcosw~cosu12cosu t!~cosu22cosu t!,
~A6!

wherew is the torsional angle corresponding to the seque
IJKL, u1 ,u2 are theIJK and JKL bond angles andu t is
again the tetrahedral angle. Numerical values of all the
rameters in the above expressions are contained in Tabl

The nonbonded interaction has the formU(r )5Ae2Br

2Cr26 between atoms on different chains and atoms on
same chain separated by more than two bonds~1–2 and 1–3
interactions are excluded!. Numerical values of all the pa
rameters for all three pairs of atoms~C-C, H-H, and C-H! are
contained in Table III. Details concerning cutoff and lon
range corrections can be found in Ref.@1#.
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APPENDIX B

In this appendix we discuss in detail the origin of t
quantitative discrepancy between the slope of thec versus
1
2 ^(f02f1)2& line as obtained from formula~5! and from
our quantum simulation data~Fig. 10!. To this end, we have
to look more closely at the way the formula has been deri
in Ref. @3#. The model used assumes a single chain cons
ing of rigid C-C bonds with lengtha and rigid C-C-C angles
uCCC5p2a, subject to torsional deformations only. The e
pression~5! then evaluatesc simply as the average end-to
end distance between carbon atoms separated by four bo
Let us denote byrW,rW8 the instantaneous positions of the tw
atoms, and byrW0 ,rW08 their equilibrium positions around

which they oscillate with instantaneous fluctuationsDW ,DW 8.
The squared end-to-end distance is then given by

~rW2rW8!25~rW02rW081DW 2DW 8!25~rW02rW08!21~DW 2DW 8!2,
~B1!

where the cross term has vanished, because the fluctua
DW ,DW 8 are orthogonal torW02rW08 ~since the bond lengths an
angles are assumed to be rigid, the only possible small
placements of carbon atoms are those perpendicular to
plane of the unperturbed all-trans chain!. This expression
contains, apart from the squared distance between the e
librium positions (rW02rW08)

2, which is directly related to the
lattice constantc, also a fluctuation term. Neglecting th
term for a relatively short segment of chain, as done in R
@3#, results in underestimating of the thermal contraction.
order to improve on this, one has to consider a longer s
ment of the chain, which would, however, require a know
edge of correlation functions between torsions displaced

TABLE III. Parameters of the nonbonded interaction of t
force field.

Atoms A @kcal/mol# B @Å21# C @Å6 kcal/mol#

C-C 14889.0 3.089 639.58

H-H 2640.2 3.739 27.39

C-H 4300.9 3.416 137.44
d
t-

ds.

ns

is-
he

ui-

f.
n
g-
-
y

more than one bond. This is clearly impossible within t
simple single-chain model assumed in Ref.@3#, where the
crystal environment of the chain is neglected entirely. T
together with a separable torsional potential classically le
to vanishing of all correlation functions between displac
torsions, and in turn to coiling of longer segments of a cha
In a crystal it is just the external nonbonded field of all oth
chains acting directly on the absolute coordinates of the
oms of a given chain~rather than on the torsional angle
which by their very nature have a character of relative co
dinates!, which induces nonzero correlations between
torsions in the chain. These correlations reflect the existe
of the underlying 3D crystal structure with its translation
long-range order and result in an overall coherent shorten
of the chain, instead of its coiling. The quantitative agre
ment of the formula with experiment, as stated in Ref.@3#,
thus appears to be accidental and arises due to compens
of two effects: neglecting the crystal field contribution low
ers the effective torsional constant by a factor of two, wh
in turn increases the torsional fluctuations and compens
for the lower value of the proportionality constant in expre
sion ~5!.

Now we derive a few formulas similar to Eq.~5!, taking
into account progressively longer segments of a chain
general, we are interested in calculating the end-to-end
tance of a segment of a chain consisting ofn52m bonds.
The corresponding vector can be expressed as@21#

Rn
W5 (

k51

n

)
i 50

k21

Ti~a,0,0!T, ~B2!

where the 333 matricesTi are defined as follows:

Ti5U cosa sina 0

sinacosf i 2cosacosf i sinf i

sinasinf i 2cosasinf i 2cosf i

U , ~B3!

anglesf i being the torsional angles. Evaluating^uRW nu& and
keeping just terms up to second order in the anglesf i we
find the following approximationsc(m)5(1/m)^uRW 2mu& to the
contracted lattice constantc ~the actual calculation has bee
performed byMATHEMATICA !:
c~2!5
1

2
^uRW 4u&5c0F12

1

4
sin2

a

2
~^f0

2&2^f0f1&!G ,

c~3!5
1

3
^uRW 6u&5c0F12

1

9
sin2

a

2
~4^f0

2&25^f0f1&12^f0f2&2^f0f3&!G ,

c~4!5
1

4
^uRW 8u&5c0F12

1

16
sin2

a

2
~10̂ f0

2&214̂ f0f1&18^f0f2&25^f0f3&12^f0f4&2^f0f5&!G , ~B4!
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c~5!5
1

5
^uRW 10u&5c0F12

1

25
sin2

a

2
~20̂ f0

2&230̂ f0f1&120̂ f0f2&214̂ f0f3&

18^f0f4&25^f0f5&12^f0f6&2^f0f7&!G ,
c~6!5

1

6
^uRW 12u&5c0F12

1

36
sin2

a

2
~35̂ f0

2&255̂ f0f1&140̂ f0f2&230̂ f0f3&120̂ f0f4&214̂ f0f5&18^f0f6&

25^f0f7&12^f0f8&2^f0f9&!G ,
r-

nit
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to a
where c052acos(a/2) is the lattice constant of the unpe
turbed chain.

We introduce now off-plane displacementszi of carbon
atoms along localz axes defined for each C atom by the u
vector kW i5(aW i3aW i 11)/a2sina, where aW i is the vector con-
necting carbon atomsi 21 andi . VectorskW i are perpendicu-
lar to the plane of the all-trans chain and their directio
alternate below and above the plane. It can then be ea
shown @4# that the torsional anglesf i defined via cosfi

52(aW i213aW i)•(aW i3aW i11)/a
4sin2a, or, alternatively, sinfi

5aW i21•(aW i3aW i11)/a
3sin2a, can be in first order in displace

mentszi expressed asf i5(2zi 222zi 211zi1zi 11)/asina.
Upon substitution of this latter expression to Eq.~B4!, we
find

c~m!5c~`!1
1

2m2

^~z02z2m!2&
c0

, ~B5!

where

c~`!5c0S 12
^~z02z2!2&

2c0
2 D ~B6!

is the limitingm→` value of the contracted lattice consta
c. The last result has been derived also in Ref.@4# by means
of a simple geometrical argument, expressingc as a projec-
.

ni
s
ily

tion of the segment consisting of two C-C bonds, who
end-to-end length isc0, on the plane of the unperturbe
chain.

Applying the formula forc(3) corresponding to a segmen
consisting of six C-C bonds to our simulation data, we find
slope that is still larger by about 50% than the theoreti
one. A characteristic property of all the expressions~B4! is
that the coefficients of torsion correlation functions increa
in magnitude with the length of the segment. The corr
limiting result for thermal contraction thus emerges progr
sively as a consequence of a delicate cancellation betw
the terms, which means that a knowledge of correlation fu
tions at many different displacements with very good ac
racy would be required. Such behavior reflects the lack
existence of a preferred crystal direction for a chain in
formulation employing exclusively torsional angles. In co
trast to this, upon substitution of the true off-plane displa
ments of the atoms into these expressions, the limiting ex
result emerges in a very simple form, which has a clear g
metrical interpretation and contains just a single correlat
function between second neighbors. This demonstrates
while the relation between the torsional fluctuations and
lattice constantc provides a very useful insight for qualita
tive understanding of the thermal contraction ofc, it would
be at the same time hard to push these considerations
truly quantitative level.
-
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